Neurobiology of Disease PrP Controls via Protein Kinase A the Direction of Synaptic Plasticity in the Immature Hippocampus
نویسندگان
چکیده
The cellular form of prion protein PrP C is highly expressed in the brain, where it can be converted into its abnormally folded isoform PrP Sc to cause neurodegenerative diseases. Its predominant synaptic localization suggests a crucial role in synaptic signaling. Interestingly, PrP C is developmentally regulated and its high expression in the immature brain could be instrumental in regulating neurogenesis and cell proliferation. Here, PrP -deficient (Prnp ) mice were used to assess whether the prion protein is involved in synaptic plasticity processes in the neonatal hippocampus. To this aim, calcium transients associated with giant depolarizing potentials, a hallmark of developmental networks, were transiently paired with mossy fiber activation in such a way that the two events were coincident. While this procedure caused long-term potentiation (LTP) in wild-type (WT) animals, it caused long-term depression (LTD) in Prnp 0/0 mice. Induction of LTP was postsynaptic and required the activation of cAMPdependent protein kinase A (PKA) signaling. The induction of LTD was presynaptic and relied on G-protein-coupled GluK1 receptor and protein lipase C. In addition, at emerging CA3-CA1 synapses in WT mice, but not in Prnp 0/0 mice, pairing Schaffer collateral stimulation with depolarization of CA1 principal cells induced LTP, known to be PKA dependent. Postsynaptic infusion of a constitutively active isoform of PKA catalytic subunit C into CA1 and CA3 principal cells in the hippocampus of Prnp 0/0 mice caused a persistent synaptic facilitation that was occluded by subsequent pairing. These data suggest that PrP C plays a crucial role in regulating via PKA synaptic plasticity in the developing hippocampus.
منابع مشابه
Lavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease
Objective(s):Neurodegenerative Alzheimer’s disease (AD) is associated with profound deficits in synaptic transmission and synaptic plasticity. Long-term potentiation (LTP), an experimental form of synaptic plasticity, is intensively examined in hippocampus. In this study we evaluated the effect of aqueous extract of lavender (Lavandula angustifolia) on induction of LTP in the CA1 area of hippoc...
متن کاملProtein Kinase Cε in the Platelet and Hippocampal Tissue as a Diagnostic Biological Marker in Alzheimer Disease
Introduction: Alzheimer disease (AD) is a neurodegenerative disorder characterized by the progressive loss of memory and other cognitive functions. Protein kinase Cε (PKCε) is an isoform that most effectively suppresses amyloid beta (Aβ) production and synaptic loss. Methods: In this study, spatial learning and memory for treated rats were evaluated by the Morris water maze test. The activity ...
متن کاملProtein expression changes of HCN1 and HCN2 in hippocampal subregions of gerbils during the normal aging process
Objective(s): Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play essential roles in various hippocampal functions, including regulation of long-term potentiation, synaptic plasticity, and hippocampal-dependent cognitive process. The objective of this study was to investigate age-related changes in HCN1 and HCN2 protein expressions in gerbil hippoca...
متن کاملDevelopmental effect of light deprivation on synaptic plasticity of rats' hippocampus: implications for melatonin
Objective(s): There are few reports have demonstrated the effect of a change-in-light experience on the structure and function of hippocampus. A change-in-light experience also affects the circadian pattern of melatonin secretion. This study aimed to investigate developmental effect of exogenous melatonin on synaptic plasticity of hippocampus of light deprived rats. Materials and Methods: The ...
متن کاملEffects of amitriptyline and fluoxetine on synaptic plasticity and TNF-α level at hippocampus of streptozotocin-induced diabetic rats
Introduction: Studies have indicated that diabetes mellitus impairs hippocampus. Diabetes increases the risk of depression and treatment with antidepressants may affect learning and memory. The aim of this study was to evaluate the effects of amitriptyline and fluoxetine on synaptic plasticity and TNF-α level in the hippocampus of streptozotocin-induced diabetic rats. Methods: Experimenta...
متن کامل